Web-Based Modelling Framework for Planning and Assessment of Managed Aquifer Recharge Applications

Dr. Catalin Stefan

Dresden Nexus Conference (DNC2017) | 17-19 May 2017
Managed aquifer recharge

Natural groundwater recharge

Unintentional aquifer recharge

What is managed aquifer recharge?

Managed Aquifer Recharge As a Tool for Adaptation of Cities to Global Change

Dr. Catalin Stefan

Source: http://ponce.sdsu.edu/groundwater_sustainable_yield_01.jpg
MAR for global change mitigation

Water risk index

https://marportal.un-igrac.org
Objective

Development of a decision support system (DSS) for groundwater management applications using modern web-based technologies, supported by GIS functionality and process-based simulations

Advantages of INOWAS-DSS

- Web-based (web browser)
- Open source
- Tools of varying complexity (empirical, analytical, numerical)
- Cloud modeling (parallel / scalable)
- Online documentation
- Accessibility of data and projects worldwide
- Easy collaboration between various modelers/decision makers

Funded by Federal Ministry of Education and Research
INOWAS DSS Toolbox

Simple tools derived from data mining and empirical correlations

Practical implementation of analytical equations of groundwater flow

Reliable simulations using complex numerical flow models (i.e. MODFLOW)

The applications are based on a collection of simple, practical and reliable web-based tools of various degrees of complexity. The tools are either included in application-specific workflows or used as standalone modelling instruments.

EXAMPLES OF TOOLS

T07: APPLICATION-SPECIFIC SCENARIOS ANALYZER

This tool makes use of the output files of the MODFLOW-based model and uses them for the customized analysis of user-defined model scenarios.
INOWAS DSS Toolbox

T01. ASR efficiency assessment (Ward)
T02. Groundwater mounding calculator (Hantush)
T03. Numerical model setup (MODFLOW, MT3DMS, SEAWAT)
T04. GIS-based site suitability mapping (Rahman)
T05. Optimisation of ASR well location
T06. MAR method selection tool
T07. Application-specific scenarios analyser
T08. 1D Analytical transport model (Ogata-Banks)
T09. Simple saltwater intrusion equations (T09_a, b, c, d, e)
T10. Clogging estimation
T11. Bank filtration simulator
T12. Maximal hydraulic loading rate
T13. Travel time through unconfined aquifer (T13_a, b, c, d, e)
T14. Pumping-induced river drawdown (T14_a, b, c, d)
T15. Stochastic weather generator
T16. Saturated soil hydraulic conductivity (T16_a, b, c, d)
T17. ASR recovery efficiency
T18. SAT basin design
T19. Planning of MAR schemes
T20. Maximum allowable well injection pressure
T21. Estimation of aquifer storage capacity
INOWAS DSS App Configurator

- **SIMPLE APPROACH**

 In this workflow, the tools are not interlinked and can be used independently from each other:

 - **T09** Simple saltwater intrusion equations
 - The tool contains analytical equations that can be used to analyse or predict the location of the interface between sea water and fresh water in a groundwater system (read more).

 - **T01** ASR efficiency index
 - Assessment of the suitability of a proposed site for an ASR system based on lateral groundwater flow, dispersive mixing, mixed convection and free convection of an aquifer (read more).

- **COMPLEX APPROACH**

 The tools in this workflow are interlinked. The tools T03 and T07 must be selected, we also recommend T01 and T04, the others are optional.

 - **T06** MAR method selection tool
 - The data-driven tool provides support in the selection of suitable MAR methods based on the analysis of several hundreds of MAR case studies worldwide (read more).

 - **T04** GIS-based site suitability mapping
 - This webGIS-based multi-criteria decision analysis tool is used for the preliminary ranking of areas that could be suitable for MAR application (read more).

 - **T01** ASR efficiency index
 - Assessment of the suitability of a proposed site for an ASR system based on lateral groundwater flow, dispersive mixing, mixed convection and free convection of an aquifer (read more).

 - **T03** Numerical model setup (SEAWAT)
 - The tool helps to setup a new SEAWAT model for a study area e.g. to better understand the local groundwater flow system or as a basis for scenario analysis (read more).

 - **T07** Application-specific scenario analyzer
 - This tool makes use of the output files of the SEAWAT-based model and uses them for the customised analysis of user-defined model scenarios (read more).
INOWAS DSS Dashboard

Dashboard

- **DATASETS (38)**
- **PROJECTS (4)**
- **APPLICATIONS (5)**
 - A03. Restoration of groundwater levels
 - A05. Assessment of saltwater intrusion
 - A06. Design optimisation of MAR schemes
 - A10. Assessment of clogging development
 - A14. Parameter estimation

Tools (8)

- T06. MAR method selection
- T04. GIS-based site suitability mapping
- T01. ASR efficiency index
- T03. Numerical model set-up (MODFLOW)
- T15. Stochastic weather generator
- **T09. Simple saltwater intrusion equations**
- T13. Travel time through unconfined aquifer
- T19. Planning of MAR schemes
- T20. Maximum well injection pressure

Details

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Project</th>
<th>Application</th>
<th>Date created</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAR on Rio Primero</td>
<td>INOWAS</td>
<td>A06</td>
<td>24.10.2006 18:40</td>
<td>Ralf Junghans</td>
</tr>
<tr>
<td>2</td>
<td>Hanói groundwater overexploitation</td>
<td>INOWAS</td>
<td>A03</td>
<td>13.06.2009 15:12</td>
<td>Daniela Vía</td>
</tr>
<tr>
<td>3</td>
<td>Tracer tests in Pinz Copitz</td>
<td>INOWAS</td>
<td>A14</td>
<td>18.07.2012 21:42</td>
<td>Jana Ringelb</td>
</tr>
<tr>
<td>4</td>
<td>Study on Barranca River</td>
<td>AyA</td>
<td>A06</td>
<td>29.09.2016 19:39</td>
<td>José Bonilla</td>
</tr>
<tr>
<td>5</td>
<td>Saltwater Intrusion in Tamarindo</td>
<td>AyA</td>
<td>A05</td>
<td>20.02.2014 09:17</td>
<td>José Bonilla</td>
</tr>
<tr>
<td>6</td>
<td>Vulnerability risk of Yucatan karst aquifer</td>
<td>CICY</td>
<td>A14</td>
<td>07.12.2016 08:31</td>
<td>Miguel Moreno</td>
</tr>
<tr>
<td>7</td>
<td>Optimization of Shafdan MAR scheme</td>
<td>SHAFDAN</td>
<td>A06</td>
<td>12.09.2009 10:15</td>
<td>Jens Fahl</td>
</tr>
<tr>
<td>8</td>
<td>Clogging issues in Malta</td>
<td>INOWAS</td>
<td>A10</td>
<td>27.08.2016 11:46</td>
<td>José Bonilla</td>
</tr>
<tr>
<td>9</td>
<td>Sustainable water flow in Fenghua Valley</td>
<td>INOWAS</td>
<td>A03</td>
<td>19.05.2013 07:01</td>
<td>Catalin Stefan</td>
</tr>
<tr>
<td>10</td>
<td>Temperature tracers tests in Berlin Tegel</td>
<td>INOWAS</td>
<td>A06</td>
<td>25.06.2016 09:18</td>
<td>Christoph Sprenger</td>
</tr>
</tbody>
</table>
INOWAS DSS Toolbox

T09. Saltwater intrusion equations

T09_c. Saltwater intrusion // Upconing

BACKGROUND

Calculation

OK

The calculated upconing level of 8.5 m is lower than the critical elevation of 9.0 m so saltwater shouldn't enter the well. However, we recommend a maximum pumping rate of 2100.6 m³/d.

Pumping rate, Q (m³/d)

Hydraulic conductivity, K (m/d)

Pre-pumping distance, dm)

Density of freshwater (g/cm³)

Density of saltwater (g/cm³)
INOWAS DSS Toolbox

T07. Scenarios analyzer
T07. Scenarios analyzer
INOWAS DSS Toolbox

T07. Scenarios analyzer

SCENARIOS

- **BASE SCENARIO HANOI 2005-2007**

- **SCENARIO 1**
 - Simulation of MAR type river bank filtration

- **SCENARIO 2**
 - Simulation of MAR type injection wells

- **SCENARIO 3**
 - Combination of MAR types river bank filtration and injection wells.

Layer 3 head

Active Points

<table>
<thead>
<tr>
<th>Point</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>105.856799999218751</td>
<td>21.04867943245356</td>
</tr>
<tr>
<td>1</td>
<td>105.794279992573051</td>
<td>21.024264421061601</td>
</tr>
<tr>
<td>2</td>
<td>105.81825256347658</td>
<td>21.03723438590533</td>
</tr>
</tbody>
</table>

Graph

- 02/01/2006
- **Point 0 Base Scenario Hanoi 2005-2007**
 - -0.7250723242759705
- **Point 1 Base Scenario Hanoi 2005-2007**
 - -5.515626430581475
- **Point 2 Base Scenario Hanoi 2005-2007**
 - -6.7395234180797119
INOWAS DSS

- allows the **integrated use of various model complexities**
- provides **best accessibility of project data** and **multi-institutional collaboration** through web-based implementation
- makes use of a combination of **widely available open-source tools**
- promotes the **case-based reasoning approach** as additional support for parameter estimation and solution finding

Public release expected for end of 2017

https://tu-dresden.de/uw/inowas
Contact

ADDRESS

Technische Universität Dresden
Junior Research Group INOWAS
Pratzschwitzer Str. 15
01796 Pirna
GERMANY

Dr. Catalin Stefan

Phone: +49 3501 530044
Fax: +49 3501 530022
Email: catalin.stefan@tu-dresden.de
http://tu-dresden.de/uw/inowas

Project funded by Federal Ministry of Education and Research