17-19 MAY 2017 DRESDEN, GERMANY

DEUTSCHES HYGIENE MUSEUM

DAY 1: Sessions in a Nutshell

Wednesday, 17 May 2017

A.1 Wastewater Reuse in Nexus Perspective: Environmental, Economic, and Societal Opportunities

Wastewater is a critical resource in a circular economy. • Wastewater sanitation is of high complexity and its implementation requires Institutional stakeholders, lawyer but also transboundary collaboration. • Waste water recycling in industries leads to higher resource efficiency and increased economic benefits. • WW reuse leads to a circular economy but changes in the distribution of addedvalue and restrictions for farmers should be promoted.

• Constructed wetlands (CW) are critical for treatment of waste water especially in developing economies. • Regulatory measures have to be implemented to increase the acceptancy of the safe use of wastewater and make farmers implement the use of treated WW.

B.2 Smart Green Cities and the Water-Soil-Waste-Energy Nexus

Smart cities are about the nexus between people that governance structure. It is also about small and middle sized cities and not only driven by urbanisation. • The India case highlights no explicit nexus in energy supply and wastewater treatment. Access to tech and finance is not a problem, but political willingness. • We need more pilot projects on the Water-Energy-Food Nexus for further development and implementaiton. A project in Munich has shown what needs to be changed.

B.1 Adaptation of Cities to Global Change for Urban Resilience

Transdisciplinary and collaborative approaches are key for bridging the gap between microclimatic evidence and urban design practices. • SPEAKER ABSENT • Participatory approaches can shape research priorities and enhance urban resilience applying the Water-Energy-Food Nexus to organic waste management issues. • A comparative planning process based on broad participation allows breaking down the SDGs to the local level and the formation of contextual objectives. • AltWater assess current and future urban water supply demands e.g., to fill gaps and make resilience to future changes: by seeking alternative sources. • Political and topographical differences play a role in climate change adaptation and knowledge transfer is also challenging. • Question: cities are exploring adaptation but they don't go beyond expected? Is there any way to go further? • Answer: Nexus approach is required in cities to adapt to climate change and make theme resilient by integrating resources.

X.1 Knowledge Management and Transfer for Adoption of a Nexus Approach and Achieving SDGs

To implement a sustainable natural resource management in the tropics 3 innovative approaches were succesfully developed by involving all relevant stakeholders. • City-to-City Learning can be an important mechanism for small to medium sized cities to adapt to climate change. • Forced to planned for future impacts. With an holistic perspective. • Cultural knowledge determined by volcano traditional influences daily life and resourceswater management in the study area (Indonesia).

Image: Jan Rieger

A.3 Roles of Multifunctional Reservoirs in the SDG Agenda

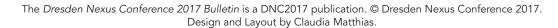
The Nexus approach can be achieved either by charisma of enlightened leadership or bcause of disaster. • Energy demand in African can be largely met using hydropower projects. • Hydropower can contribute to SDGs 2, 6, 7 and 13. • Analyze the demand and supply balance of water in the different scenarios identifying suitable scenarios of reservoir management for the reduction of water use. • There is a clear link between climate change and alterations in reservoir storage. • Issues related to water can range from too little water to too much water and water that is of poor quality. • Natural water retention measures should be seen as part of river basin management plans and as a step towards achieving sustainability.

B.5 Assessing Resilience at the City Level: Methods, Frameworks, Models, and Tools

Author provides concepts and ideas how to create resilience in urban water system, such as focus on innovations to deal with hazard shocks and natural stresses. • How to measure the resilience of several water systems, their ability to absorb stress and changes, and how to compare alternatives for future systems? • The presenter highlights Blue City Index (BCI), its indicatores, and scoring. Many cities have a low BCI, they need to improve their water governance. • Author provides concepts and ideas how to create resilience in urban water system, such as focus on innovations to deal with hazard shocks and natural stress. • A theoretical methodoloy is proposed for how to achieve a general resilience in a system through solving a series of specified resilences to individual mode. • Insights about paradigm change from satisfactory objects to resiliet neigbourhoods are given from a perspective of architecture discipline.

Image: Jan Rieger

A.2 Resource Recovery and Reuse in Multifunctional Land-Use Systems


Technology and capacity are constraints to reuse waste for reducing the negative impact and this can be solved by transferring knowledge and technology. • Urine collected from 3 people, that is about 0.36kg prosperous (P), and application as a fertilizer in agriculture produce 31 kg of wheat and 16kg of soybean. • Halophytes can be used as catalyst for fast-track the paradigm shift towards resource recovery reuse. • We should use each and every possibility to transform waste into a resource - burdens into assets - by utilising the waste hierarchy concept. • There needs to be a shift from unplanned and untreated or partially treated wastewater to planned safe uses. Many economically viable examples already exist. • The reuse of wastewater for food production in India is important as it povides nutrients, supplements chemical fertilisers and increases crop yields. • SPEAKER ABSENT Technology is available, but scale, perception changes, education and lack of capacity remain key challenges.

X.2 New and Refined Approaches Supporting the Implementation of a Nexus Approach

We need to define clear goals to adress the SDGs -Innovative, integrative management of multifunctional landuse systems can help tackling several problems. A Business Policy Interface (BPI) bringing together business and policy making to adress problems of aggregate mining in the Hanoi area, Viet Nam. • Nexus Observatory mechanisms could potentially improve our understanding on the nexus, using social network analysis to re-center interests. • Analyzing crowdsourced data may contribute to a more balanced assessment of the perceived landscape, for a better integration of public values into planning. • Top-down watershed management policies have been implemented since 70s in Ethiopia, with some successful achievements (opportunities) and still challenges, presented together with an strategy to evaluate the implementation.

